Vestibular Perception following Acute Unilateral Vestibular Lesions
نویسندگان
چکیده
Little is known about the vestibulo-perceptual (VP) system, particularly after a unilateral vestibular lesion. We investigated vestibulo-ocular (VO) and VP function in 25 patients with vestibular neuritis (VN) acutely (2 days after onset) and after compensation (recovery phase, 10 weeks). Since the effect of VN on reflex and perceptual function may differ at threshold and supra-threshold acceleration levels, we used two stimulus intensities, acceleration steps of 0.5°/s(2) and velocity steps of 90°/s (acceleration 180°/s(2)). We hypothesised that the vestibular lesion or the compensatory processes could dissociate VO and VP function, particularly if the acute vertiginous sensation interferes with the perceptual tasks. Both in acute and recovery phases, VO and VP thresholds increased, particularly during ipsilesional rotations. In signal detection theory this indicates that signals from the healthy and affected side are still fused, but result in asymmetric thresholds due to a lesion-induced bias. The normal pattern whereby VP thresholds are higher than VO thresholds was preserved, indicating that any 'perceptual noise' added by the vertigo does not disrupt the cognitive decision-making processes inherent to the perceptual task. Overall, the parallel findings in VO and VP thresholds imply little or no additional cortical processing and suggest that vestibular thresholds essentially reflect the sensitivity of the fused peripheral receptors. In contrast, a significant VO-VP dissociation for supra-threshold stimuli was found. Acutely, time constants and duration of the VO and VP responses were reduced - asymmetrically for VO, as expected, but surprisingly symmetrical for perception. At recovery, VP responses normalised but VO responses remained shortened and asymmetric. Thus, unlike threshold data, supra-threshold responses show considerable VO-VP dissociation indicative of additional, higher-order processing of vestibular signals. We provide evidence of perceptual processes (ultimately cortical) participating in vestibular compensation, suppressing asymmetry acutely in unilateral vestibular lesions.
منابع مشابه
Insular strokes cause no vestibular deficits.
BACKGROUND AND PURPOSE In previous imaging studies, the posterior insular cortex (IC) was identified as an essential part for vestibular otolith perception and considered as a core region of a human vestibular cortical network. However, it is still unknown whether lesions exclusively restricted to the posterior IC suffice to provoke signs of vestibular otolith dysfunction. Thus, present data ai...
متن کاملAdaptive mechanisms of VOR compensation after unilateral peripheral vestibular lesions in humans.
To further elucidate possible central plastic adaptive processes during the recovery from a unilateral peripheral vestibular lesion, we investigated vestibular functions in humans over a period of 2 months after an acute unilateral labyrinthine lesion. A unilateral peripheral vestibular lesion creates both a tonic imbalance that causes spontaneous nystagmus and a decrease and directional asymme...
متن کاملChanges of visual vertical perception: a long-term sign of unilateral and bilateral vestibular loss.
This study investigates how unilateral and bilateral vestibular deafferentation modifies visual vertical perception in the presence of dynamic and static visual cues. We tested 40 Menière's patients before and after (from 1 week to 1 year) a curative unilateral vestibular neurotomy (UVN), and 4 patients with bilateral vestibular loss. Patients' performances were compared with those of 24 health...
متن کاملRecovery of postural control after an acute unilateral vestibular lesion in humans.
Postural control during stance was investigated using the EQUITEST system in 10 patients during recovery after an acute unilateral vestibular lesion and was compared to the time course of recovery of the static and dynamic vestibulo-ocular imbalance. During the acute phase the patients showed a characteristic pattern with normal upright stance as long as at least one accurate sensory input (vis...
متن کاملPosterior insular cortex – a site of vestibular–somatosensory interaction?
Background In previous imaging studies the insular cortex (IC) has been identified as an essential part of the processing of a wide spectrum of perception and sensorimotor integration. Yet, there are no systematic lesion studies in a sufficient number of patients examining whether processing of vestibular and the interaction of somatosensory and vestibular signals take place in the IC. Methods ...
متن کامل